New Insights from the CoMSIA Analysis within the Framework of Density Functional Theory

نویسندگان

  • Alejandro Morales-Bayuelo
  • Julio Caballero
چکیده

Today, one of the main aims in the pharmaceutical companies is seek new methodologies to understand the biological activity in molecules from the computational point of view. In this sense, understand the traditional tools (3D QSAR) such as the Comparative Molecular Similarity Analysis (CoMSIA) within the quantum chemistry framework, can be relevant. In this context, the quantification of steric and electrostatic effects on a serie of antimalarials chalcones was performed on the basis of the descriptors from the molecular quantum similarity field and chemical reactivity supported in DFT. The steric and electrostatic effects were studied using scales of convergence quantitative alpha (α) and beta (β), respectively. To deal the problem of relative molecular orientation in the quantum similarity field the TopoGeometrical Superposition Algorithms (TGSA) was used as molecular alignment method. Finally, a chemical reactivity analysis using global and local descriptors such as chemical hardness, softness, electrophilicity, and Fukui Functions was developed. . .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and electronic properties of CO molecule adsorbed on the TiO2 supported Au overlayers: Insights from density functional theory computations

We have examined the adsorption behaviors of carbon monoxide (CO) molecule on TiO2 anatase supported Au overlayers. The results of density functional theory (DFT) calculations were used in order to gain insights into the effects of the adsorption of CO molecules on the considered hybrid nanostructures. We have investigated different adsorption geometries of CO over the nanoparticles....

متن کامل

NH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations

Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...

متن کامل

Structural and electronic properties of CO molecule adsorbed on the TiO2 supported Au overlayers: Insights from density functional theory computations

We have examined the adsorption behaviors of carbon monoxide (CO) molecule on TiO2 anatase supported Au overlayers. The results of density functional theory (DFT) calculations were used in order to gain insights into the effects of the adsorption of CO molecules on the considered hybrid nanostructures. We have investigated different adsorption geometries of CO over the nanoparticles....

متن کامل

NH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations

Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...

متن کامل

Natural Bond Orbital (NBO) Population Analysis of Iridabenzene (C5H5Ir)(PH3)3

The molecular structure of iridabenzene (C5 H5 Ir)(PH3 )3 was calculated by the B3LYP density functional model using LANL2DZ basis set for Ir and 6-31G(d) for other atoms. The results from natural bond orbital (NBO) analysis have provided new insights into Ir–ligand bonding, the hybridization of atoms and the electronic structure of the title molecule. The NBO calculations show that σ(Ir-C2) bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015